Denklem Kurma Örnek Çözümleri

Konusu 'Sayısal Dersler' forumundadır ve Wish tarafından 13 Mayıs 2011 başlatılmıştır.

  1. Wish Üye



    Denklem Kurma Konu anlatımı-Denklem Kurma Çözümleri-Denklem Kurma Çözümlü Örnekler

    DENKLEM KURMA PROBLEMLERİ
    A SAYI KESİR PROBLEMLERİ
    Verilen problemin x y a p n gibi sembollerle ifade edilmesine denklem kurma denir


    Bir x sayısının; a fazlası > x+a

    a eksiği > x-a
    a katı > ax
    1 sı > 1 X
    a a

    Örnek — 1
    Ali Ayşe ve Mehmet 27700 lirayı paylaşacaklardır Ali Mehmet’ten 1000 lira fazla Ayşe de Ali’den 1300 lira eksik alacaktır Buna göre Mehmet’in payı kaç lira olur?
    A) 8000 B) 9000
    C) 10000 D) 11000
    (1990— FL)


    Çözüm

    Mehmet:x
    Ali :x+1000
    Ayşe x+1000)-1300
    +


    Toplam 3x + 700 = 27700

    3x = 27000

    x = 9000 olur

    Cevap B



    Örnek-2

    “İki sayıdan biri diğerinden 8 büyüktür Büyük sayının 2 katı ile küçük sayının 4 katı toplamı 184 ettiğine göre büyük sayı kaçtır?” Bu problemin çözümünü veren denklem aşağıdakilerden hangisidir?

    A)x+2(x+8)=184
    B)2x+4(x-8)=184
    C)2x+4(x+8)=184
    D) 4x+2(x-8)= 184
    (1992— FL)



    Çözüm
    küçük sayı Büyük sayı
    x-8 x

    Büyük sayının 2 katı > 2x
    Küçük sayının 4 katı > 4(x- Cool dir
    Toplamları; 2x + 4(x –Cool = 184 olur

    Cevap B
    Örnek-3
    Bir öğrencinin 140000 lirası vardır Bu öğrenci 4 kitap 6 defter alırsa 20000 liraya ihtiyacı olacaktır Eğer 4 defter 6 kitap alırsa 20000 lirası artacaktır Bir defter ile bir ki¬tabın toplam fiyatı kaç liradır?
    A) 12000 B) 24000 C) 28000 D) 36000
    (1992— FL)



    Çözüm

    4 kitap + 6 defter=160000 lira ve
    6 kitap + 4 defter = 120000 lira
    +

    10 kitap + 10 defter 280000
    1 kitap + 1 defter = 28000 lira olur
    Cevap C

    Örnek-4
    3 1
    Ali’nin parasının — i Ayşe’nin parasının — üne eşittir Ay¬şe Ali’ye 3000 lira verseydi
    5 3
    paraları eşit olacaktı Ali’nin parası kaç liradır?

    A) 5500 B) 7500 0)15000 D) 30000
    (1992— FL)

    Çözüm

    Ali Ayşe
    a b lira olsun
    3a b 9a
    — = — b= — tir
    5 3 5
    a + 3000 = b-3000
    9a
    a + 6000 = ——
    5

    5a + 30000 = 9a

    30000 = 4a

    a = 7500 lira olur Cevap B





    Örnek-5
    1 1
    Bir bisikletli gideceği yolun önce — ünü sonra — ünü
    1 3 4
    daha sonra ise kalan yolun — ini gidiyor Bisikletli top-
    5
    1am 24 km yol aldığına göre gitmesi gereken kaç km yolu kalmıştır?
    A)8 B)10 C)12 D)16

    (1993-FL)


    Çözüm
    1 1 4+3 7
    Önce — + — = —— = ——
    3 4 12 12

    1 12 7 5
    Sonra Kalanın — ini yani — - — = —
    5 12 12 12

    5 1 1
    — x — = —sini daha gider
    12 5 12
    7 1 8 2
    Toplam gittiği yol —+— = — = — ü olur
    12 12 12 3

    2 3 2 1
    — ü 24 km isekalan yol — - — = — tür
    3 3 3 3


    2
    — ü 24 km ise 24:2=12 km olur
    3
    Cevap C

    Örnek-6

    Bir köylü kilogram; 95000 liradan 30 kg elma satmıştır Eline geçen paranın 1 275 000 lirası ile kumaş kalanı ile de zeytinyağı almıştır Zeytinyağının bir litresi kaç Ii¬radır?

    Bu problemin çözülebilmesi için aşağıdaki bilgiler¬den hangisinin verilmesi gerekir?

    A) Elmalardan kaç lira kazanıldığı

    B) Kaç metre kumaş alındığı

    C) Zeytinyağına kaç lira verildiği

    D) Kaç litre zeytinyağı alındığı

    (1998-ÖO)


    Çözüm

    30 kg elma > 30 x 95 000 = 2 850 000 lira

    2 850 000 - 1 275 000 = 1 575 000 lira kalan para
    Köylünün zeytinyağına verdiği toplam para bulunmuş¬tur Fakat zeytinyağının bir litresinin fiyatının bulunabil¬mesi için kaç litre zeytinyağı alındığının bilinmesi gerek¬lidir

    Cevap D


    B YAŞ PROBLEMLERİ

    • Belli bir sene sonra herkes aynı miktarda yaşlanır

    • İki kişinin yaşları toplamı t yıl sonra 2t artar

    • Belli bir sene önce herkes aynı miktar daha gençti

    • Üç kişinin yaşları toplamı t yıl önce 3t daha azdır

    • İki kişinin arasındaki yaş farkı zamanla değişmez


    Örnek-7

    Anne ile 3 çocuğunun yaşları toplamı 61 dir 3 yıl sonra annenin yaşı çocuklarının yaşları toplamının 2 katının 2 eksiği olacaktır Annenin şimdiki yaşı kaçtır?
    A)40 B)45 C)50 D)55
    (1996— ATML)
    Çözüm
    Anne 3 çocuk
    Şimdiki yaşları: x 61-x
    3 yıl sonraki yaşları: x + 3 61-x + 9
    x+3=2(70-x)-2 dir
    x+3=140-2x-2
    3x= 135 ise
    x=45 olur
    Cevap B

    Örnek-8

    Bir çocuk 9 annesi 42 yaşındadır Kaç yıl sonra yaşları
    3
    farkının yaşları topl***** oranı — olur?
    7
    A)9 8)11 C)13 D)15
    (1997 — FL/AOL)

    Çözüm
    Çocuk Annesi
    Bugünkü yaşları 9 42
    x yıl sonraki yaşları 9 + x 42 + x
    Yaşları farkı 42+x—9 x 3
    ——————— = ———————
    Yaşları toplamı 42+x+9±x 7

    33 11 3 1
    ——— = —— 77 = 51 + 2X
    51+2X 7
    2X = 26
    X= 13 olur
    Cevap C


    C İŞÇİ - HAVUZ PROBLEMLERİ

    • Birim zamanda yapılan iş veya dolan havuz üzerinden işlem yapılır

    • Bir işin tamamı (işçi sayısı sabit tutularak) a saatte bitiyorsa 1 saatte bu işin sı biter

    (Havuz problem¬leri içinde benzer bir mantık kullanılır)
    • Bir işin tamamını 1 işçi a Il işçi b saatte ikisi birlikte x saatte bitirebiliyorlarsa;

    1 1 1
    —+ — = — tır
    a b x


    • Dolduran musluk için (+) boşaltan musluk için ise (—) işareti kullanılır

    • Bir işi üç işçi sırasıyla a b e günde yapabilmektedir Üçü birlikte t gün çalıştıktan sonra 1 işçi işi bırakıyor Kalan işi diğer işçiler x günde tamamlıyor

    Bu durumda;


    1 1 1 1 1
    t — + — + — + X — + — = 1 dir
    a b c b c


    Bu mantık genişletilerek diğer soru tiplerine uyarlanabilir

    Örnek-9
    5
    Birinci musluk boş bir havuzun 6 günde tamamını ikinci musluk 1 günde — sini dolduruyor
    12
    Üçüncü bir musluk da dolu olan bu havuzu 3 günde boşaltıyor Bu üç mus¬luk aynı anda açılırsa boş olan bu havuz kaç günde dolar?

    A)1 B)2 C)3 D)4
    (1991 —FL)




    Çözüm
    1 1 1 1
    — + — - — = —
    a b c x

    1 5 1 1
    — + — - — = —
    6 12 3 x

    2 + 5 – 4 1
    ———— = —
    12 x
    3 1
    — = — ise X=4 olur
    12 X
    Cevap D



    D HAREKET PROBLEMLERİ

    • x = Yol v = Hız t = Zaman olmak üzere;

    x x
    x=v t v= — t= —
    t v



    Örnek-10

    A şehrinden B şehrine aynı anda hareket eden iki oto¬büsün saatteki ortalama hızları 80 km ve 90 km dir Hı¬zı fazla olan otobüs diğerinden 10 dakika önce 8 şeh¬rine vardığına göre iki şehir arası kaç km dir?
    A)100 B)120 C)130 D)150
    (1990— FL)



    Çözüm
    10
    10 dakika= — saattir
    60


    Yol = Hız X Zaman idi

    IABI=90t ve

    10
    IABI = 80 (t + —) dır
    60

    Alınan yollar eşit olduğundan
    1
    90 t = 80 (t+ —)
    6
    8
    9t = 8t + —
    6
    4
    t — saattir Buradan
    3
    4
    ABİ = 90 —
    3

    ABİ 120 km olur
    Cevap B


    Örnek-11
    Aralarında 400 km bulunan iki hareketli aynı anda birbir¬lerine doğru hareket ediyorlar Hareketlilerden birinin hı¬zı saatte 60 km olduğuna ve 4 saat sonra karşılaştıklarına göre diğer hareketlinin saatteki hızı kaç km dir?
    A)70 B)60 C)50 D)40

    Çözüm

    400 = (60 + V2) 4

    100 = 60 + V2

    40 = V2 olur
    Cevap D
    Örnek-12

    “Saatte ortalama 80 km hızla giden bir otobüs kendisin¬den 120 km önde ve saatte ortalama 60 km hızla aynı yöne giden bir kamyona kaç saat sonra yetişir?” Proble¬minin çözümünü veren denklem aşağıdakilerden hangisidir?

    1 1
    A) —— + — =120
    80X 60X

    B) 80x-60x= 120

    C) 80x + 60x = 120

    1 1
    D) —— - —— =120
    180X 60X
    (1993— FL)
    Çözüm

    Otobüs kamyona x saatte yetişir
    x saat sonra otobüs 80x kamyon ise 60x yol alır
    Bu yol farkı ise 120 km dir Problem çözümünü veren denklem
    80x - 60x= 120 olur
    Cevap B

    Örnek-13
    A şehrinden B şehrine gitmek için aynı anda yola çıkan iki otobüsün birinin saatteki ortalama hızı 80 km diğeri¬ninki 110 km dir Hızlı giden otobüs B ye 3 saat önce vardığına göre iki şehir arası kaç km dir?
    A)1210 B)1000 C)880 D)720
    (1995-FL/AOL)

    Çözüm
    İki aracında aldığı yollar eşit olduğundan;
    80 t= 110 (t - 3)
    5t = 11 (t - 3)
    8t = 11t - 33
    33 = 3t
    t = 11 saat
    x = 80 t x=8011 ise x=880 km olur Cevap C


    Örnek
    Bir nehirde 180 km lik bir yolu motor; akıntının etkisiyle
    18 saatte gidip 30 saatte dönüyor Bu motorun kendi
    hızı saatte kaç km dir?
    A)6 B)8 C)10 D)12


    Çözüm
    180
    VA+VK= —— =10
    18

    180
    VK-VA= —— =6
    30
    +

    2 VK = 16 ise
    VK = 8 km
    Cevap B


    E YÜZDE PROBLEMLERİ

    1 Basit Yüzde Problemleri

    Bu problem tipindeki soruları yaparken aşağıdaki tablo¬da verilen bilgileri bilmek sizlere kolaylık sağlayacaktır

    a
    %a= —— dür
    100
    a
    Bir sayının % a sı = X—— dür
    100
    100+a
    Bir sayının % a artırılmış hali = X ——— dür
    100

    100-a
    Bir sayının % a azaltılmış hali = X ——— dür
    100


    2 Kar - Zarar Problemleri

    Bu tip sorularda aşağıdaki tabloda verilen bilgiler kolaylık sağlayacaktır
    Maliyet % 20 kar % 20 karlı satış
    100 20 120
    Maliyet % 20 indirim % 20 indirimli satış
    100 20 80
    Örnek

    % 32 indirimle 17 000 liraya satılan bir ayakkabının indirimden önceki fiyatı kaç liradır?
    A) 20 000 B) 22 000
    0) 25 000 D) 27 000
    (1990— FL)
    Çözüm

    % 100-%32 = %68 (% 32 indirimli)


    %68 i l7000 lira ise
    %100 ü x liradır

    x=17000 100
    68
    x = 25000 liradır
    Cevap C

    Örnek
    1
    Bir malın— ü % 25 geri kalanı da % 30 karla satılıyor
    3
    Eğer malın tamamı % 35 karla satılsaydı 200 000 lira daha fazla kar edilmiş olacaktı Bu malın mal oluş fiyatı kaç liradır?
    A) 3000000 B) 6000000
    C) 8000000 D) 10000000
    (1993— FL)
    Çözüm

    Malın tamamı x olsun;

    x 125 2x 130 135
    —— — — + —— —— = x —— - 200000
    3 100 3 100 100
    125x+260x 135x
    ————— - —— = -200 000
    300 100
    (3)
    385x - 405x
    ————— = -200000 - 20x = -60000000
    300

    x = 3000000 lira olur Cevap A



    Örnek
    Bir kırtasiyeci kalemlerin tanesini a liradan satarsa top¬lam b lira zarar c liradan satarsa toplam d lira kar ede¬cektir Buna göre aşağıdaki işlemlerden hangisi yapı¬lırsa kalem sayısı bulunur?
    b+d c+a b d d b
    A) —— B) —— C) — + — D) — - —
    c-d b-d c a a c
    (1994— FL)
    Çözüm

    Kalem sayısı: x

    Maliyet: y lira olsun

    x a = y - b
    x c = y + d
    ———————— Taraf tarafa çıkarma işlemi yapalım
    (xa - xc) = - b - d
    x(a - c) = - b - d
    x(c - a) = b + d

    b+d
    x= ——olur
    c-a
    Cevap A
    Örnek
    Bir mal %20 karla 36000 liraya başka bir mal da % 20 za¬rarla 36000 liraya satılıyor Satıcının iki malın satışı so¬nundaki kar - zarar durumu aşağıdakilerden hangisidir?
    A) 3000 lira kar B) 3000 lira zarar
    0) 1500 lira kar D) 1500 lira zarar
    (1995— DPY)
    Çözüm
    120
    A —— = 36000 ise A = 30000 dir
    100
    36000-30000= 6000 lira kar
    80
    B —— = 36000 ise B = 45000 dir
    100
    45000- 36000 = 9000 lira zarar

    Toplam = 9000 - 6000
    = 3000 lira zarar olur
    Cevap B
    3 Faiz Problemleri
    F:Faiz
    A: Ana para (kapital sermaye)
    n :Faiz yüzdesi (faiz fiyatı)
    t :Zaman olmak üzere

    Ant
    Yıllık faiz > F= ——
    100
    Ant
    Aylık faiz > F= ———
    12100
    Ant
    Haftalık faiz > F=———
    52100

    Ant
    Günlük faiz > F= ————
    360100

    Örnek

    Bankaya yatırılan 400 000 lira paranın 6 yılda getirdi¬ği faizi aynı faiz yüzdesi ile 600 000 lira kaç yılda ge¬tirir?
    A)1 B)2 0)3 D)4
    (1992— EL)
    Çözüm

    Ant
    F= ———__ formülünden
    100

    400000 6 t 600000nt
    F= ————— = —————
    100 100

    2 400 000 = 600 000n
    n = 4 yıl olur
    Cevap D
    4 Karışım Problemleri
    Saf madde miktarı
    Karışım oranı = —————————
    Tüm karışım miktarı
    Örnek

    100 kg şekerli suyun % 40 ı şekerdir Bu şekerli suya kaç kg su katalım ki karışımın şeker oranı % 20 ol¬sun?

    A)50 8)100 0)150 D)200
    (1992— EL)




    Çözüm
    40
    100 —— = 40 kg şeker
    100
    Saf madde miktarı
    Karışım oranı = ————————— formülünden
    Tüm karışım miktarı
    20 40
    —— = ———— ise x = 100 kg olur Cevap B
    100 100+X
    HARFLİ İFADELER
    A HARFLİ İFADELER

    5a x3 3r 2(a - b) x + y - z gibi ifadelere harfli ifadeler denir

    • 3x2y ifadesinde 3 e kat sayı denir

    • Harfli ifadelerde eksi (-) veya artı (+) işaretleriyle birbirinden ayrılan kısımlara terim denir

    • Harfleri ve harflerin kuvvetleri aynı olan terimlere benzer terimler denir

    1 Benzer Terimlerle Toplama ve Çıkarma İşlemi

    Harfli ifadeler toplanırken benzer terimlerin kat sayıları toplanır Bulunmuş olan toplamın yanına benzer teri çarpan olarak yazılır

    Örnek

    • 4x+3x=(4+3)x = 7x

    • 5x2 +9x2 - 8x2=(5+9-8) x2 = 6x2
    1 5 1 5 6
    • — x + — x = — + — x = — x = 2x
    3 3 3 3 3


    2 Harfli İfadelerle Çarpma İşlemi

    Üslü sayılarda gördüğümüz tabanları ayni olan üslü sayıların çarpımı kuralını bu bölümde de kullanacağı; Yani;


    (a xn) (b xm) = a b xn+m dir


    Örnek
    • a a a = a1+1+1 = a3

    • x3 x7 x2 = x3+7+2 = x12

    • (3a3 b) (-2 a b2) -3 ( 2) a3+1 b1+2 = -6a4 b3

    şeklinde olur Şayet çarpma işlemi iki tane çok terimliden oluşuyorsa bu çok çok terimlilerde çarpma işlem çarpmanın toplama işlemi üzerine dağılma özeliği kullanılarak yapılır


    Örnek

    • 3a(a+2)=(3aa)+(3a2) = 3a2+6a



    3 Harfli İfadelerde Bölme İşlemi

    Üslü sayılarda gördüğümüz tabanları aynı olan üslü sayıların bölümü kuralını bu bölümde de kullanacağız Yani;

    a xn a
    —— = — xn-m ‘dir
    b xm b


    Örnek

    X3
    —— = X3-1 = X2
    X

    4 Harfli Bir İfadenin Sayısal Değerini Bulma

    Harfli bir ifadenin verilen bir sayıya göre değerini bul¬mak için ifadede harfin yerine sayı yazılarak işlem ya¬pılır

    Örnek

    • x = 2 için x2 + 4x + 2 nin değerini bulalım:

    x2+ 4x + 2 ifadesinde x yerine 2 sayısını yazarsak;

    22 + 42 + 2 = 4 + 8 + 2 = 14 olur


    5 Harfli ifadelerin Derecesi

    Tek terimli harfli ifadenin derecesi içinde bulunan bir harfin üssüne ya da terimin bütün harflerinin üslerinin topl***** göre söylenir

    Örnek

    5x7 y2 ifadesi;
    • x e göre 7 derecedendir
    • y e göre 2 derecedendir
    • Tüm harflerine göre 9 derecedendir (7 + 2 = 9)

    Örnek
    2x2 (3x - 4) ifadesi;

    2x23x - 2x2 4 = 6x3 - 8x2 dir Buna göre bu harfli ifadenin derecesi en yüksek dereceli olan ifadenin derecesidir Yanı 3 tur